امروز: شنبه 31 شهریور 1397
دسته بندی محصولات
بخش همکاران
بلوک کد اختصاصی

بررسی روش انرژی و كاربرد آن در خواص كششی پارچه

بررسی روش انرژی و كاربرد آن در خواص كششی پارچه دسته: نساجی
بازدید: 1 بار
فرمت فایل: doc
حجم فایل: 1159 کیلوبایت
تعداد صفحات فایل: 31

میكرومكانیكهای پارچه را بر اساس روش واحد كوچك مرسوم بررسی خواهیم كرد بصورتیكه یك پارچه را به عنوان یك شبكه‌ای از واحدهای كوچك مشخص و تكرار شونده در نظر گرفته شده و به شكل موجهای تجعد در ساختار پارچه های تاری و پودی و حلقه های سه بعدی در ساختار پارچه های حلقوی قرار گرفته اند

قیمت فایل فقط 15,000 تومان

خرید

بررسی روش انرژی و كاربرد آن در خواص كششی پارچه

1- مقدمه :

میكرومكانیكهای پارچه را بر اساس روش واحد كوچك مرسوم بررسی خواهیم كرد. بصورتیكه یك پارچه را به عنوان یك شبكه‌ای از واحدهای كوچك مشخص و تكرار شونده در نظر گرفته شده و به شكل موجهای تجعد در ساختار پارچه های تاری  و پودی و حلقه های سه بعدی در ساختار پارچه های حلقوی قرار گرفته اند.

 پارچه ها یك نوع مواد پیچیده‌ای هستند كه حتی بطور تقریبی از حالتهای ایده آل ونرمال فرض شده در آنالیز ساختاری مهندسی و مكانیك نیز پیروی نمی كنند . همچنین مطالعات هندسه پارچه ، نقش اساسی در توسعه فرآیند كنترل كیفیت طراحی، و تقویت پایداری ابعادی و خصوصیات پارچه در طول مدت تولید و كاربرد را ایفا می كند .

در مورد پارچه های تاری پودی ، روشهای آنالیز نیرو بطور گسترده‌ای برای مطالعه و تفسیر خواص مكانیكی پارچه مثل كشش ، خمش و برش  مورد استفاده قرار گرفته است .اگر چه در مورد پارچه های حلقوی بدلیل طبعیت سه بعدی حلقه های متقاطع ، آنالیز روش نیرو بسیار پیچیده است . در هر دو روشهای آنالیز هندسی و نیرو برای پارچه های تاری /پودی و حلقوی ،؛ تعدادی از فرضیات اولیه در ارتباط با طبیعت تماسهای نخ و شكل سطح مقطع نخ در هر واحد كوچك از پارچه لازم می باشد .

این فرضیات معمولاً خطاهای زیادی در مورد هر نوع آنالیز مكانیكی پارچه یا خواص رئولوژی آن را به همراه دارد .

در این بحث ، نشان داده می شود كه روشهای آنالیز مینیمم كردن انرژی بر بسیاری از مشكلات قبلی روشهای آنالیز گذشته، برتری خواهد داشت تكنیكهای مینیمم انرژی به طوركلی قوی هستند وقتی كه برای مطالعه ساختارها و مشخصات تغییر فرم الاستیك پارچه ( بعد از استراحت ) بكار می روند . همچنین اجازه می دهد كه مقایسه های مستقیم در حالتهایی كه پارامترهای نرمال شده بی بعد بین ساختمانهای مختلف پارچه تاری و پودی و حلقوی ، را بوجود آورد . آنالیز انرژی بر اساس اصل اساسی كه ساختارهای الاستیك همیشه ، شكلی از مینیمم انرژی ازدیاد طول بدون توجه به تغییر فرم ایجاد شده، در نظرگرفته می شود .نتیجه مینیمم انرژی كرنشی كل نخ در پارچه (شامل خمش ، پیچش ، فشار جانبی و ازدیاد طول -طولی نخ ) بعنوان یك مسئله كنترل بهینه عمل نمود . و شامل قیود ( محدودیتها ) مشخص ه در پارچه می‌باشد.

2- روشهای آنالیز انرژی

كاملاً مشخص است كه شرایط نیرو  و تعادل گشتاوری در ساختارهای استاتیكی از نظر ریاضی با شرایط مینیمم انرژی معادل است (37-35) بدلیل اینكه انرژی یك كمیت عددی است بنابراین قسمتهای خاصی از انرژی كل می تواند بصورت عددی اضافه گردد اما نیروها و تنشها باید بصورت برداری جمع شوند .

تریلور و ریدینگ[38] نشان دادند ، آنالیز مكانیك نخ می تواند به سادگی و قوی بوسیله روش انرژی انجام گیرد . هرل و نیوتن [39] نیز نشان دادند كه آنالیز انرژی به كار رفته در پارچه های بی بافت ، نتیجه كلی ساده تر از روش نیرو مرتبط با آن را به دست خواهد آورد . همچنین تایبی و بیكر[40] ، از اصول انرژی برای پیدا كردن تاب مورد نیاز نخ چند لا برای تولید كردن نخهای بدون تاب زندگی استفاده كردند . و بالاخره تئوری كاستیگیلیانو[41] بطور گسترده در مسائل مهندسی برای پیدا كردن حل، ساختارهای نامعین بكار رفته است .این تئوری توسط گروسبرگ[13] در پارچه های تاری و پودی استفاده شده است .

این روشهای انرژی بصورت ساده و كلی نمی تواند برای پارچه ها بكار روند بدلیل اینكه همیشه یكسری فرضیات اولیه در مورد هندسه مسئله وجود دارد . تریلور و ریدینگ ، هندسه مارپیچ ثابت را برای نخها فرض نمودند، در نتیجه روش آنها هیچ اطلاعاتی درباره نیروهای عرضی عمل شده در داخل نخ را بدست نمی آورد . هرل و نیوتن فرضیاتی درباره هندسه توده الیاف بی بافت در نظر گرفتند ، كه باز هم اطلاعاتی در رابطه با نیروهای داخلی در سیستم بدست نیامد. در تئوری كاستیگیلیانو، فرضیة هندسه ثابت بكار رفت كه فقط قانون تنش – كرنش خطی می تواند استنباط گردد[41].بنابراین گروسبرگ[13] فقط مدول ازدیاد طول اولیه برای پارچه تاری و پودی را بیان نموده است .

روش های انرژی بطور گسترده در مسائل مكانیك پیچیده استفاده شده بطوریكه بجای حالت هندسی ، روابط جبری بدست آمده از اصول انرژی جایگزین شده است . اگر مسئله بخوبی و بطور صحیح فرمول سازی شده باشد حداقل اطلاعات بیشتری با استفاده از روش انرژی نسبت به روشهای نیرو می تواند بدست آید . سادگی بیشتر روش انرژی بطور طبیعی آنرا به یك روش جذاب تبدیل نموده و همچنین تعداد فرضیات و تقریبهای غیر ضروری را نیز اغلب حذف نموده است . بطور مثال با استفاده از تئوری كنترل بهینه ، فرضیات قبلی ساخته شده در مورد طبیعت منطقه تقاطع نخ در پارچه حلقوی ساده ، لازم نمی باشد .

 دلایل مناسب دیگری ،برای استفاده از روشهای انرژی در مسائل مكانیكی پارچه نیز وجود دارد . اغلب این روش بر اساس روشهای مستقیم در محاسبة متغیرها و تكنیك عددی مشخص را پیشنهاد می‌دهد .

3- فرمول سازی ریاضی معادلات انرژی

1-3- مسئله اصلی

برای ساختار تغییر شكل یافته این فرضیه ، مینیمم انرژی نشاندهندة این است كه نیروهای داخلی و خارجی و كوپلها در تعادل مكانیكی هستند .در آنالیز نیرو ، لازم است كه یك واحد كوچك ساختاری به قسمتهایی تقسیم بندی شود بطوریكه در انتهای آنها ، نیروها و كوپلها عمل می كنند . طور هر قسمت باید متفاوت باشد بخاطر اینكه نقطه عمل كننده . نیروهای داخلی ثابت نیست .بنابراین در ساختار حلقوی ساده ، باید فرضیاتی ، در مورد نیروهای نقطه‌ای و كوپلهای عمل شده در ساختار و همچنین درباره طبیعت مناطق تماسی بین نخها ، ساخته شود . علاوه بر این ،یك فرمول متفاوت از مسئله برای هر ساختار پارچه و برای هر نوع تغییر شكل با استفاده از آنالیز نیرو، لازم می باشد .

حتی برای سادگی بیشتر ، فشار نخ و فشردگی پارچه (Jamming) در آنالیز نهایی بحساب نمی آیند .

آنالیز انرژی كلی مكانیك پارچه پیشنهاد شده ، از ساختار پارچه مستقل می باشد تعدادی از فرضیات محدود كننده آنالیزهای قبلی نیز حذف شده است همچنین فشرده شدن پارچه در نظر گرفته می شود .

این تئوری ارائه شده ، در حالت كلی و با بیان اهمیت فیزیكی حالتهای معرفی شده از تئوری كنترل بهینه در ساختارهای اساسی مكانیك پارچه شرح داده شده است .

نقطه شروع روش انرژی ، آنالیز ساختار الاستیك شامل مشخص كردن وفرمول سازی هر قسمت از انرژی در ساختار است این انرژی نیاز به تعریف دقیق دارد و می تواند بصورت پارامترهای ذیل ارائه گردد .

1)‌انرژی پتانسیل كل

2)‌ انرژی مكمل

3) انرژی كرنشی

 این تقسیم بندی به طبیعت نیروها و كوپلهای مرزی بكار رفته ، بستگی دارد .در روش ارائه شده ، انرژی كرنشی كل ( شامل مجموع خمش ، پیچش – فشار جانبی و انرژیهای كرنشی ازدیاد طول طولی می باشد ) فرمول سازی شده است و این انرژی كرنشی كل ، مینیمم سازی شده است .

 شرایط لازم تعادل نیرو و گشتاور با شرایط مناسب انرژی مینیمم ، پایدار خواهد شد بشرط آنكه مسئله به طور صحیح فرمول سازی شده باشد .

2-3-فرضیات

 با توجه به اینكه انرژی یك كمیت عددی است بنابراین انرژی كل E هر واحد كوچك ، بصورت مجموع انرژی  حالتهای هر موج یا حلقه تكرار شونده ، بیان می گردد .

(1-9)                         

 به ترتیب حالتهای انرژی در واحد طول نخ برای خمش ، پیچش ، فشار جانبی و كشش طولی هستند و Li هم طول i  امین حلقه در تكرار و n هم تعداد حلقه های تشكیل شده در واحد كوچك پارچه می باشد .

فرضیات ذیل برای آنالیز كلی در نظر گرفته می شود .

1)‌الف : نخها در خمش ، دارای الاستیك خطی هستند در نتیجه انرژی خمشی در واحد طول نخ بصورت تعریف می گردد بطوریكه B  سختی خمش نخ و K انحنای كلی نخ می باشد .

ب : نخ دارای سختی یكسان ، در تمام جهات خمشی است .

 2) انرژی پیچشی نخ در واحد طول بصورت  تعریف می گردد بطوریكه G‌ سختی پیچشی نخ و تاب در واحد طول نخ است .

برای سادگی ، انرژی فشار جانبی نخ در واحد طول در ابتدا بصورت EC=Cg(r) فرض می شود كه ‍C سختی فشاری و r فاصله از یك نقطه روی نخ مرجع با محل دیگر است اگرچه هنوز تعریف نشده است اما نقطه‌ در محل تماس نخ می باشد . تابع اصلی تماس نخ g‌ بصورت نیمه تجربی مشخص می شود . بعداً در آنالیز انرژی فشاری Ec ، بصورت كاملتر تعریف خواهد شد .

در ابتدا، انرژی ذخیره شده حاصل از ازدیاد طول كششی نخ در پارچه چشم پوشی می‌گردد. این فرضیه به استراحت دادن برای یك ساختار پارچه تاری و پودی  نیاز خواهد داشت اگرچه برای پارچه های حلقوی با تغییر شكل كم و متوسط بوسیله تغییرات در انحنای نخ و فشار نسبت به ازدیاد طول كششی ، مشخص می گردد . بنابراین در ابتدا بغیر از تغییر شكلهای زیاد پارچه،طول نخ ثابت فرض می شود و بنابراین Et نیز ناچیز خواهد بود .

3-3- آنالیز ریاضی

 انرژی كرنشی

 منحنی نشان داده شده بوسیله محور نخ در سه جهت خم شده با Z=Z(S) ارائه می‌گردد بطوریكه  مختصات سه بعدی هر نقطه روی محور نخ هستند و S پارامتر متغیر طول كمان است انحنای محور نخ با بردار اندازه K  نشان داده می‌شود .(‌نسبت به S بدست آمده است )

(2-9)                                 

انرژی خمشی نخ ( در واحد طول ) در هر نقطه بصورت ذیل خواهد بود.

برای شفافیت در ابتدا یك شكل حلقه بافت حلقوی ساده در واحد كوچك پارچه در نظر گرفته می شود بطوریكه در معادله (1-9)n=1 است و یك بافت حلقوی تاری یكطرفه 1×1 ریب است .

 با توجه به فرضیات ارائه شده و با تقسیم بر B معادله (1-9) بصورت ذیل تبدیل خواهد شد .

(3-9)                         

L مدول یا منحنی الخط طول تركیبی در محل تقاطع نخ تكی و  است این حالت مدول طول نخ در ساختار پارچه ، نشاندهنده حالت كلی باقیمانده روی همة ساختارهای پارچه معرفی شده است . شكل Z=Z(S) قابل محاسبه است بطوریكه تابع انرژی U را با توجه به دو قید ( محدودیت ) ذیل مینیمم كند .

(4-9)                                      

تعریف پارامتر طول كمان است و

(5-9)                                 

كه  یك نقطه روی همسایگی نخ با  كه در حال حاضر تعریف نشده است این محدودیت در معادله (4-9) به این معنی است كه به  .بستگی دارد و به منظور پیدا كردن سه متغیر كه مستقل هستند معادلات زیرتعریف شده اند .

(6-9)                

اگر جهتهای 3.2.1 مطابق شكل  9-9 باشند بنابراین طبق معادله 6-9، سیستم مختصات كروی تنظیم شده است بطوریكه Z4 زاویه‌ای است كه المان طول نخ ( dz) با محور 1 می سازد و Z5 زاویه‌ای است كه تصویر dz روی صفحه 3-2 با محور 2 می‌سازد.

متغیرهای m2,m1  نرخهای تغییرات در طول محور نخ را نشان می دهند پارامتر m1 چرخش در صفحه‌ای كه شامل جزء dz و محور 1 است را تعریف می كند . و بنابراین یك بردار نرمال در این صفحه است بطور مشابه m2 چرخش در صفحه 3-2 و بنابراین یك بردار در جهت 1 می باشد و m2 دو جزء دارد (هر دو در صفحه 1-dz) بطوریكه  نرمال روی  موازی با dz است جزء آخر نشان دهنده تاب نخ به خاطر خمش در سه جهت می باشد. اگر علاوه بر خمش ، نخ ممكن است در هر نقطه از محور خودش تابیده یا تاب آن باز شود بنابراین زاویه تاب Z6تعریف می شود و نرخ تاب هم m3 است نرخ تاب m3 به تاب هندسی اضافه می‌گردد .

سه وجهی تشكیل شده بوسیله   می چرخد و همزمان در طول محور نخ حركت می كند. این سه وجهی مساوی با تانژانت ، نرمال و دونرمال در منحنی نیست . و همچنین ،« انحناء» همانطور كه تعریف شده توسط  عمل شده در همان جهت برابر با نرمال ، نیست این اندازة معادل و هم ارز است و میتواند به صورت ذیل محاسبه گردد (‌همچنین از نظر جبری ثابت شده است ).

(7-9)                         

      (8-9)                                                       

بنابراین معادله (3-9) بصورت ذیل تغییر می كند .

(9-9)       

حل با تئوری كنترل بهینه

 بردار اندازه m‌ به عنوان بردار كنترل مستقل در نظر گرفته می شود [43].

كه مقدار آن باید درهر نقطه از طول حلقه بدست آید برای اینكهU مینیمم شود با قرار دادن قیود در معادله 6-9 بطوریكه برای مینیمم

در هر مكانی در طول حلقه خواهد بود این مسئله میتواند با معادل و با استفاده از تئوری كنترل بهینه ، برگردان شود [49-44-42].

اگر بصورت معمول حركت كنیم [43]،ضرایب لاگرانژ معرفی می شوند . و برای هر جزء معادلات (6-9) و همیلتن H(‌كه واحد های انرژی BL را دارد ) بصورت زیر تعریف شده است .

(11-9)                        

(12-9)               

بطوریكه E در معادله (1-9) تعریف شده است .

مینیمم كردن تابع انرژی جدید Ua بدون قید ( محدودیت ) از نظر ریاضی معادل مینیمم كردن U با قیود در معادله 6-9 است بطوریكه :

(13-9)               

یك مجموعه از شرایط ضروری برای مینیمم كردن معادله (13-9) بوسیله معادلات متعارف ( معیار ) همیلتن ارائه می گردد.

(14-9)                            

(15-9)                                                               

معادله های (14-9) بیان مجدد معادلات ( 6-9) هستند و اثر قیود بین متغیرها هستند .معادله های (15-9) بعنوان معادلات كمكی شناخته شده واز معادله (12-9) محاسبه می شوند .

(16-9)

بطوریكه مشتق گیری با توجه به r و با توجه به طول قوس S مشخص می گردد.

تنظیم شرایط لازم برای مینیمم مشابه معادله (10-9) است

(17-9)               

این شرایط روابط ذیل را بدست می آورد .

(18-9)               

برای نشان دادن اینكه این معادلات مینیمم را نسبت به ماكزیمم نشان می دهد با مشتق گیری ازمعادله (17-9) و نشان دادن اینكه [48]

(19-9)                            

برای همه نقاط روی منحنی Z برقرار است بدلیل اینكه H ، S را بطور واضح شامل نمی شود ثابت  می‌شود كه مقدار ثابت H= در طول حلقه است [49]).

از نتیجه گیری معادله های (16-9)، كاربرد  ساخته شده است .

این قطعاً در حالت  درست است .اگر  روی همسایگی نخ با شكل مختلف قرار داشته باشد بنابراین  مستقل هستند اگر  از Z بوسیله انتقال ، چرخش یا انعكاس ( تركیب اینها ) نتیجه گیری شود و بردار فاصله از نقطه S‌روی منحنی Z با  در هر  دلخواه تلاقی كند بنابراین درباره  مستقل از Z(S) و  خواهد شد .

قیمت فایل فقط 15,000 تومان

خرید

برچسب ها : روشهای آنالیز انرژی , بررسی روش انرژی و كاربرد آن در خواص كششی پارچه , فرمول سازی ریاضی معادلات انرژی

نظرات کاربران در مورد این کالا
تا کنون هیچ نظری درباره این کالا ثبت نگردیده است.
ارسال نظر